Pain management is a critical challenge in healthcare, often exacerbated by loneliness and emotional distress. This study investigated the potential of a communication robot, Moffuly, to reduce pain perception and influence hormonal responses in a controlled experimental setting. Nineteen healthy participants underwent heat pain stimulation under two conditions: with and without robotic interaction. Pain levels were assessed using the Short-form McGill Pain Questionnaire and the Visual Analogue Scale, while mood and mental states were evaluated through established questionnaires including the Profile of Mood States, Hospital Anxiety and Depression Scale, and Self-Rating Depression Scale. Hormonal changes, including cortisol, growth hormone, oxytocin, estradiol, and dehydroepiandrosterone-sulfate, were measured from blood samples collected at key time points. The results demonstrated significant reductions in subjective pain and improvements in mood following robotic interaction. These effects were accompanied by favorable hormonal changes, including increased oxytocin and decreased cortisol and growth hormone levels. The findings suggest that robotic interaction may serve as an innovative approach to pain management by addressing both physiological and psychological factors. This study highlights the potential of robotics to complement traditional therapies in alleviating pain and enhancing emotional well-being. By mitigating emotional distress and loneliness, robotic interventions may enhance existing pain therapies and offer innovative solutions for resource-limited healthcare systems.
Read full abstract