The Earth's stress field is composed of 4 sub-fields that are induced by A standard global stress field results from a combination of these four sub-stress-fields. From the existence of six otherwise inexplicable geodynamic phenomena, it has to be concluded that the standard global stress field of the present can only be an instantaneous (still) photograph of a field that constantly migrates eastwards relative to the Earth's continents. This disclosure can be explained with an extended plate tectonic model, in which the Earth's surface is subdivided by the circum-Pacific ring of subduction zones, into a Pacific area and a continental or Pangaea area with intra-Pangaea oceans (Atlantic, Indian Ocean, etc.). The Pangaea area in turn is subdivided into a North Pangaea area and a South Pangaea area. Due to the off-centre rotation of the spinning Earth around the gravitational centre of the Earth-Moon (-Sun) system (tidal forces), the lower mantle, the Pacific basin, area or state (Pacific crust = lower mantle?), the remaining states that together with the Pacific state compose the Wilson Cycle of ocean opening and closing (Rift/Red Sea state, Atlantic state, Pacific state, Collision/Himalayas state), the ocean sequence of which is permanently arranged from E to W through 360° around the globe, and the standard global stress field as an expression of the Wilson Cycle, are constantly displaced eastwards relative to the upper mantle, the continents or the North and South Pangaea areas with Intra-Pangaea oceans, completing one full turn around the globe in 200 to 250 my (principle of hypocycloid gearing). The continents migrate westwards around the globe and around the Pacific basin in the N and S hemispheres, through sequences of plate tectonic settings of the Oceanic or Wilson Cycle that possess distinct regional stress fields as parts of the standars global stress field, or else the continents are subjected to eastward migrating sequences of settings with distinct regional stress fields as parts of the Wilson Cycle/standard global stress field. By rotations and N-S migrations of the individual continents dissected in all directions by groups of parallel structural planes (fracture systems) through the standard global stress field, the orientation of which is aligned with the spinning Earth's axis and equator and that constantly migrates eastwards relative to the continents, the amount and nature of stress (compression, tension, shearing) a given fracture system is subjected to is constantly altered and the tectonic activity may gradually be transferred from the system under consideration to another fracture system, with slightly different strike directions. Every 400 to 500 my or each Pangaea Cycle (two complete W-E/E-W displacements around the globe between the continents/Pangaea areas with Intra-Pangaea Oceans/upper mantle on the one side and the lower mantle/Pacific basin/ sequence of ocean states and local stress fields of the Wilson Cycle and the standard global stress field on the other) the inhomogeneous standard global stress field is reversed in the N-S direction. Any model proposing the long-time existence of extended lineaments or fracture systems that do not end at the margin of the respective continent or at an orogen/suture zone/former continental margin, in the event of being older than the respective orogenesis, but which cross the surrounding ocean or the younger orogen and continue in the neighbouring continents or former independent continents or even encompass the whole globe, and which puts foreward simultaneous tectonic activity along the whole length of such lineament or fracture system and proposes their longevity or permanent existence, contradicts the physical laws that are the foundation of plate tectonics and mobilism.
Read full abstract