Abstract Heating profiles calculated from sounding networks and other observations during three Tropical Rainfall Measuring Mission (TRMM) field campaigns [the Kwajalein Experiment (KWAJEX), TRMM Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA), and South China Sea Monsoon Experiment (SCSMEX)] show distinct geographical differences between oceanic, continental, and monsoon regimes. Differing cloud types (both precipitating and nonprecipitating) play an important role in determining the total diabatic heating profile. Variations in the vertical structure of the apparent heat source, Q1, can be related to the diurnal cycle, large-scale forcings such as atmospheric waves, and rain thresholds at each location. For example, TRMM-LBA, which occurred in the Brazilian Amazon, had mostly deep convection during the day while KWAJEX, which occurred in the western portion of the Pacific intertropical convergence zone, had more shallow and moderately deep daytime convection. Therefore, the afternoon height of maximum heating was more bottom heavy (i.e., heating below 600 hPa) during KWAJEX compared to TRMM-LBA. More organized convective systems with extensive stratiform rain areas and upper-level cloud decks tended to occur in the early and late morning hours during TRMM-LBA and KWAJEX, respectively, thereby causing Q1 profiles to be top heavy (i.e., maxima from 600 to 400 hPa) at those times. SCSMEX, which occurred in the South China Sea during the monsoon season, had top-heavy daytime and nighttime heating profiles suggesting that mesoscale convective systems occurred throughout the diurnal cycle, although more precipitation and upper-level cloud in the afternoon caused the daytime heating maximum to be larger. A tendency toward bottom- and top-heavy heating profile variations is also associated with the different cloud types that occurred before and after the passage of easterly wave troughs during KWAJEX, the easterly and westerly regimes during TRMM-LBA, and the monsoon onset and postonset active periods during SCSMEX. Rain thresholds based on heavy, moderate, and light/no-rain amounts can further differentiate top-heavy heating, bottom-heavy heating, and tropospheric cooling. These budget studies suggest that model calculations and satellite retrievals of Q1 must account for a large number of factors in order to accurately determine the vertical structure of diabatic heating associated with tropical cloud systems.
Read full abstract