Cathepsins are major lysosomal enzymes that participate in necessary physiological processes, including protein degradation, tissue differentiation, and innate or adaptive immune responses. According to their proteolytic activity, vertebrate cathepsins are classified as cysteine proteases (cathepsins B, C, F, H, K, L, O, S, V, W, and X or Z), aspartic proteases (cathepsin D and E), and serine proteases (cathepsin A and G). Several cathepsins were reported in teleosts, however, no cathepsin gene has been identified from Pacific cod so far. In the present study, a total of 13 cathepsin genes were identified for Pacific cod. The evolutionary path of each cathepsin gene was demonstrated via analysis of phylogenetic trees, multiple alignments, conserved domains, motif compositions, and tertiary structures. Tissue distribution analysis showed that all cathepsin genes were ubiquitously expressed in eight healthy tissues but they exhibited diverse levels of expression. Several cathepsin genes were found to be highly expressed in the kidney, spleen, head kidney and liver, whereas low or modest levels were detected in the gills, skin, intestines, and heart. Temporal-specific expression of cathepsins in early developmental stages of Pacific cod were also conducted. CTSK, S, F, and Z were highly expressed at 1 dph and 5 dph and decreased later, while CTSL, L1, and L.1 transcript levels gradually increased in a time-dependent manner. Additionally, the expression profiles of cathepsin genes in Pacific cod were evaluated in the spleen and liver after poly I:C challenge. The results indicated that all cathepsin genes were significantly upregulated upon poly I:C stimulation, suggesting that they play key roles in antiviral immune responses in Pacific cod. Our findings establish a foundation for future exploration of the molecular mechanisms of cathepsins in modulating antiviral immunity in Pacific cod.