BackgroundMetabolic dysfunction-associated steatosis liver disease (MASLD) is one of the most common metabolic liver diseases around the world, whose prevalence continues to increase. Currently, there are few medications to treat MASLD. Ergothioneine is a natural compound derived from mushrooms whose sulfhydryl groups confer unique antioxidant, anti-inflammatory and detoxifying effects. Currently, research on the therapeutic effects of ergothioneine in MASLD is unknown. Therefore, this study explored the effect and mechanism of EGT in MASLD.MethodsThe ameliorative effects and mechanisms of ergothioneine on MASLD were evaluated using HFD mice and PA-treated AML12 cells. Mouse body weight, body fat, IPGTT, IPITT, immunohistochemistry, serum biochemical indices, and staining of liver sections were assayed to verify the protective role of ergothioneine in MASLD. RNA-seq was applied to explore the mechanism of action of ergothioneine. The role of ergothioneine in AML12 was confirmed by western blotting, qPCR, ELISA, Oil Red O staining, flow cytometry, and ROS assays. Subsequently, the 3-methyladenine (3-MA, an autophagy inhibitor) was subsequently used to confirm that ergothioneine alleviated MASLD by promoting autophagy.ResultsErgothioneine reduced body weight, body fat and blood lipids, and improved insulin resistance and lipid and glycogen deposition in MASLD mice. Furthermore, ergothioneine was found to increase autophagy levels and attenuate oxidative damage, inflammation, and apoptosis. In contrast, intervention with 3-MA abrogated these effects, suggesting that ergothioneine ameliorated effects by promoting autophagy.ConclusionErgothioneine may be a drug with great therapeutic potential for MASLD. Furthermore, this protective effect was mediated through the activation of autophagy.
Read full abstract