Abstract
Polysaccharides have gained substantial attention for their diverse biological activities. The present study was conucted to elucidate the effects and molecular mechanisms of Tremella fuciformis-derived polysaccharides (PTP-3a) on glucose and lipid metabolism in palmitic acid (PA) - treated HepG2 cells. Multiple parameters were assessed following PTP-3a treatment, including lipid accumulation, glycogen content, glucose consumption, and enzyme activities, including pyruvate kinase (PK) and hexokinase (HK). Additionally, the expression levels of genes associated with glucose and lipid metabolism was evaluated using western blot analysis. PTP-3a effectively inhibited lipid accumulation, promoted the glucose consumption, increased the amount of cellular glycogen, and enhanced PK and HK activities in PA-treated cells. Furthermore, PTP-3a induced a significant increase in the p-AMPK/AMPK ratio and the expression level of PPARa, while decreasing the expression levels of SREBP, FAS, ACC, and SOCS3. In conclusion, these findings suggested that PTP-3a exerted beneficial effects on glucose and lipid metabolism by activating the AMPK signaling pathway, resulting in the inhibition of lipogenesis, promotion of fatty acid oxidation, and enhancement of cellular glycogen synthesis and glycolysis. These findings hold clinical relevance and provide a foundation for potential treatments for non-alcoholic fatty liver disease (NAFLD) and and related metabolic disorders.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.