The cytochrome p450 1A (CYP1A) plays vital role in detoxification of xenobiotic compounds in living organisms. In the present study, full-length CYP1A gene was sequenced from liver of Labeo rohita and mRNA expression analysis were carried out at 0, 2, 4, 8, 12, 24, 48, 72, 96 and 120 h (h) time points after emamectin benzoate treatment. The full-length cDNA sequence of CYP1A was 1741 bp which consist of open reading frame (ORF) of 1618 bp, 5′-untranslated region (UTR) 48 bp and 75 bp 3′-UTR respectively. ORF encodes 526 amino acids with a molecular mass a 59.05 kDa and an isoelectric point of 8.74. The subcellular localization confirmed presence of the CYP1A protein was higher in plasma membrane (45.8%), followed by the mitochondrial region (13.9%) and nuclear region (9.2%). The CYP1A protein interaction was found to intermingle more with other CYP family proteins. Analysis of tissue distribution revealed that CYP1A gene was predominantly expressed in the liver compared to other tissues kidney, gills, muscle and intestine. Furthermore, present study reveals that CYP1A mRNA level in emamectin benzoate treated group @ 20 mgkg−1 body was significantly (p < 0.05) higher compared with the control. The CYP1A mRNA expression levels were found upregulating with time and highest expression levels at 24 h. Histological examination found that emamectin benzoate treated liver revealed vacuolisation, hepatocyte infiltrations, cytoplasmic degeneration of hepatocytes compared to control. Overall, present results lay a strong basis for CYP1A is important biomarker for drug detoxification in aquatic animals.