Time-resolved fluorescence anisotropy measurements on 1-[4-(tri-methylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) molecules in lipid vesicles of palmitoyloleoylphosphatidylcholine (POPC), PC extracted from egg yolk (EggPC), dioleoyl-PC (DOPC), dilinoleoyl-PC (DLPC), phosphatidylglycerol extracted from egg yolk (EggPG), dioleoyl-PG (DOPG), sulfoquinovosyldiacylglycerol (SQDG) and digalactosyl-DG (DGDG) with and without cholesterol are presented. The observed intensity decay curves are analyzed simultaneously in terms of the Brownian rotational diffusion model. The analysis thus yields the isotropic fluorescence decay, the initial anisotropy r (0), the order parameters mean value of P2 and mean value of P4 as well as the diffusion coefficient of the long molecular axis. It is shown that increasing unsaturation in the acyl chains of the PC lipids results in an increase in the rotational diffusion rates of the probes and a decrease in the order parameter mean value of P2. However, the value of mean value of P4 remains unchanged. The corresponding orientational distribution function of the probes is bimodal, with fractions lying preferentially parallel and perpendicular to the local vesicle surface. Surprisingly, the fraction of probe molecules lying with their long axes parallel to the bilayer surface increases with increasing unsaturation with a concomitant narrowing in the width of the distribution of the fraction lying perpendicular to it. As expected, cholesterol is found to increase the order parameters in all the systems and to suppress the tendency of the molecules to lie parallel to the bilayer surface. Furthermore, the rotational diffusion coefficients of the probes is found to increase in all the systems except for DLPC. Interestingly, the effects of unsaturation on the reorientational dynamics of TMA-DPH molecules in the vesicle systems are opposite to those found in the corresponding planar multibilayers (Deinum et al. 1988), whereas the same cholesterol effect is observed for the two systems. Nevertheless, the TMA-DPH molecules exhibit higher diffusion coefficients in the vesicle than in the planar multibilayer systems. In addition, a unimodal distribution of the probe molecules is found in the multibilayer systems. The differences between the two systems are ascribed to the differences in the radius of curvature and the hydration of the bilayers. Lastly we rationalize the bimodal distribution of the TMA-DPH molecules in the vesicles in terms of their observed partition between the lipid and aqueous phases.