The implantation and rapid thermal annealing of sulfur (S <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> ) ions has previously been shown to be an effective method in non-epitaxially attaining hole carrier concentrations as high as 1 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">19</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-3</sup> in gallium antimonide (GaSb). This technique was used to fabricate a photovoltaic diode by delta-doping the front surface of a p-type GaSb substrate and forming a p <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">++</sup> /p junction. The steep potential created using this process is increased by strong Fermi level pinning at the metal/p <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">++</sup> interface, resulting in a camel diode with a barrier height of 0.51 eV. A post-fabrication etch process succeeded in improving the short circuit current density to 41.8 mA/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and the internal quantum efficiency to 90% by enhancing the carrier lifetime away from the front metal contact grid. Likewise, the open circuit voltage improved to 0.21 V, with an intrinsic fill factor above 40%. These results offer the potential of a significantly higher power output than similar non-epitaxial devices made on n-type GaSb substrates.
Read full abstract