In p-adic analysis one can find an analog of the classical gamma function defined on the ring of p-adic integers. In 1975, Morita defined the p-adic gamma function Gamma _p by a suitable modification of the function n mapsto n!. In this note we prove that for any given prime number p the Morita p-adic gamma function Gamma _p is differentially transcendental over {mathbb {C}}_p(X). The main result is an analog of the classical Hölder’s theorem, which states that Euler’s gamma function Gamma does not satisfy any algebraic differential equation whose coefficients are rational functions.
Read full abstract