Abstract
For the purposes of this paper supercongruences are congruences between terminating hypergeometric series and quotients of p-adic Gamma functions that are stronger than those one can expect to prove using commutative formal group laws. We prove a number of such supercongruences by using classical hypergeometric transformation formulae. These formulae, most of which are decades or centuries old, allow us to write the terminating series as the ratio of products of Γ-values. At this point sums have become quotients. Writing these Γ-quotients as Γp-quotients, we are in a situation that is well-suited for proving p-adic congruences. These Γp-functions can be p-adically approximated by their Taylor series expansions. Sometimes there is cancellation of the lower order terms, leading to stronger congruences. Using this technique we prove, among other things, a conjecture of Kibelbek and a strengthened version of a conjecture of van Hamme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.