The stratospheric ozone layer protects life on earth by preventing solar ultraviolet radiation from reaching the surface. Owing to the large population in the Northern Hemisphere and extreme ozone loss in the Arctic, changes in Arctic stratospheric ozone (ASO) and their causes have attracted broad attention recently. Using monthly mean data during the period 1980–2020 from MERRA-2, the relationship between the stratospheric polar vortex (SPV) and ASO, along with the relative contributions of chemical and dynamic processes associated with the SPV to changes in ASO, were examined in this study. Results showed that the ASO in March has a strong out-of-phase link with the strength of the SPV in March, with no obvious lead–lag correlations, i.e., an increase (decrease) in ASO corresponds to a weakened (strengthened) SPV. Further analysis suggested that the strong out-of-phase link between the SPV and ASO is related to changes in Brewer–Dobson circulation (BDC). Strong SPV events, accompanied by a low temperature condition and weakened upward propagation of planetary waves over the Arctic in the stratosphere, result in weakened BDC. The weakened downwelling at high latitudes tends to transport less ozone-rich air in the upper stratosphere at lower latitudes into the lower stratosphere at high latitudes, facilitating a decrease in ASO. The BDC's vertical velocity plays the dominant role in modulating ASO.摘要利用1980–2020年MERRA-2资料, 分析了平流层极涡 (Stratospheric polar vortex, SPV) 和北极臭氧 (Arctic stratospheric ozone, ASO) 的关系, 评估了与SPV相关的化学, 动力过程在其中的相对作用. 结果表明, 3月份ASO与同期SPV强度反相关最大. SPV-ASO二者反相关与平流层剩余环流 (Brewer-Dobson circulation, BDC) 变化密切相关. 强SPV伴随的北极平流层低温条件和行星波向上传播减弱, 导致BDC减弱, 减弱的BDC下沉支将低纬度平流层上层臭氧含量较低的空气输送到北极平流层低层, 从而导致ASO减少. BDC垂直速度在其中起主导作用.