Addressing the environmental threat of oxytetracycline (OTC) contamination, this study harnesses the bioremediation capabilities of Bacillus brevis MM2, a manganese-oxidizing bacterium from acid mine drainage. We demonstrate the strain's exceptional efficiency in degrading OTC under high manganese conditions, with complete removal achieved within 24 h. The degradation is facilitated by the production of Bio-MnOx, utilizing their high redox potential and large specific surface area, which significantly enhance the adsorption and oxidation of OTC. Advanced characterization techniques, including X-ray diffraction, scanning electron microscopy, High Resolution-Transmission Electronic Microscope and X-ray photoelectron spectroscopy, provide a detailed analysis of the structural and functional properties of Bio-MnOx. The study also reveals the crucial role of Mn(III) intermediates and reactive oxygen species in the OTC degradation process, with quenching experiments validating their substantial impact on efficiency. Laccase activity, a key manganese-oxidizing enzyme, is assessed spectrophotometrically, further highlighting the enzymatic contribution to Mn(II) oxidation and OTC breakdown. This research contributes valuable insights and approaches for the targeted bioremediation of OTC-contaminated aquatic environments, offering a promising strategy for combating pollution from antibiotics and analogous compounds.
Read full abstract