The accelerated growth of the economy and advancements in medical technology have led to the discharge of a diverse range of organic pollutants into water sources. Recent investigations into water treatment have demonstrated the potential for integrating photocatalysis with techniques such as photocatalytic persulfate activation and the Photo-Fenton process for more efficient wastewater management. Iron-based photocatalysts responsive to visible light offer several advantages, including non-toxicity, safety, affordability, and excellent chemical and optical properties. Currently, there is a notable increase in research activity focused on the iron-based photocatalytic degradation of antibiotics and dyes. Given their abundance, cost-effectiveness, and eco-friendliness, iron-based photocatalysis shows considerable promise for various applications, including water treatment, air purification, and energy conversion. The use of iron-based photocatalysts has been demonstrated to facilitate the production of more reactive oxygen radicals, achievable through the Photo-Fenton process, direct photocatalysis, and the photocatalytic activation of persulfates. This approach has been demonstrated to enhance the degradation efficiency of antibiotics and dyes. Ongoing research encompasses the preparation and refinement of iron-based materials, exploration of photocatalytic mechanisms, and expansion of practical applications. Future directions include material innovation, elucidation of mechanisms, scaling up applications, and multifunctionalization, with the objective of enhancing photocatalytic efficiency, transitioning the technology from laboratory settings to practical scales, and providing effective solutions to environmental challenges and energy constraints.
Read full abstract