AbstractAutonomic self‐healing films have shown limited mechanical strength, hindering their application as biomaterials, particularly in skin bioengineering. To address this challenge, we developed polyvinyl alcohol (PVA)‐tannic acid (TA)‐based membranes with improved self‐healing properties and strong mechanical performance. Using a blade coating method and freeze–thaw cycles (−10°C for 1 h, followed by room temperature thawing), the synthesized membranes demonstrated a tensile strength of 8.8 MPa before healing and 7.6 MPa after healing, achieving an 88% healing efficiency. Membrane thickness showed a slight reduction from 465 to 432 μm posthealing. After 3000 bending cycles at a 1 cm radius, the membranes maintained flexibility with no significant changes in water vapor transmission rate (WVTR) (7.66 g/m2·day) or oxygen transmission rate (OTR) (0.13 cm3/m2·day·bar). These results underscore the membranes' suitability for dynamic skin environments, combining robust mechanical properties with excellent self‐healing capabilities. The PVA‐TA membranes present a promising solution for advanced skin bioengineering applications.
Read full abstract