Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism. To further control the polarization loss and achieve optimized impedance matching, reduced graphene oxide (rGO) is employed as a modifier. Herein, rGO serves as a binder, effectively combining individual SG particles. The matched Fermi levels of SG and rGO reduce the interfacial barrier, facilitating rapid electron transfer. Simultaneously, their combination forms a 3D conduction network, which not only enhances multiple scattering, reflection, and attenuation of electromagnetic waves but also provides abundant polarization centers for increased microwave absorption. As a result, the optimized SG/rGO aerogel achieves an impressive effective absorption bandwidth of 7.04GHz and accompanied by a minimum reflection loss of -51.1dB. This study broadens the scope of spent LIBs utilization and provides insights for wilder and more functional applications.
Read full abstract