Hypoxic-ischemic injury of neurons is a pathological process observed in several neurological conditions, including ischemic stroke and neonatal hypoxic-ischemic brain injury (HIBI). An optimal treatment strategy for these conditions remains elusive. The present study delved deeper into the molecular alterations occurring during the injury process in order to identify potential therapeutic targets. Oxygen-glucose deprivation/reperfusion (OGD/R) serves as an established in vitro model for the simulation of HIBI. This study utilized RNA sequencing to analyze rat primary hippocampal neurons that were subjected to either 0.5 or 2 h of OGD, followed by 0, 9, or 18 h of reperfusion. Differential expression analysis was conducted to identify genes dysregulated during OGD/R. Time-series analysis was used to identify genes exhibiting similar expression patterns over time. Additionally, functional enrichment analysis was conducted to explore their biological functions, and protein-protein interaction (PPI) network analyses were performed to identify hub genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for validation of hub-gene expression. The study included a total of 24 samples. Analysis revealed distinct transcriptomic alterations after OGD/R processes, with significant dysregulation of genes such as Txnip, Btg2, Egr1 and Egr2. In the OGD process, 76 genes, in two identified clusters, showed a consistent increase in expression; functional analysis showed involvement of inflammatory responses and signaling pathways like tumor necrosis factor (TNF), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and interleukin 17 (IL-17). PPI network analysis suggested that Ccl2, Jun, Cxcl1, Ptprc, and Atf3 were potential hub genes. In the reperfusion process, 274 genes, in three clusters, showed initial upregulation followed by downregulation; functional analysis suggested association with apoptotic processes and neuronal death regulation. PPI network analysis identified Esr1, Igf-1, Edn1, Hmox1, Serpine1, and Spp1 as key hub genes. qRT-PCR validated these trends. The present study provides a comprehensive transcriptomic profile of an in vitro OGD/R process. Key hub genes and pathways were identified, offering potential targets for neuroprotection after hypoxic ischemia.
Read full abstract