To investigate whether 6-shogaol (6-SH) alleviates oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal autophagy and calcium overload by promoting the expression of microRNA-26a-5p (miR-26a-5p) and inhibiting death-associated protein kinase 1 (DAPK1), and to explore its potential mechanisms. Primary cultured logarithmic growth phase mouse hippocampal neurons HT22 cells were taken and cell counting kit-8 (CCK-8) was used to detect cell viability, searching for the optimal concentration of Na2S2O4. HT22 cells were divided into blank control group (NC group), OGD/R group (sugar-free culture medium + 10 mmol/L Na2S2O4 treatment for 1.5 hours followed by normal culture medium for 4 hours), 6-SH intervention group (cultured with 10 μmol/L 6-SH for 4 hours after OGD), negative control inhibitor pretreatment group (transfected with negative control inhibitor for 48 hours followed by OGD, then cultured with 6-SH for 4 hours), and miR-26a-5p inhibitor pretreatment group (transfected with miR-26a-5p inhibitor for 48 hours followed by OGD, then cultured with 6-SH for 4 hours). Cell viability of each group was detected by CCK-8 method; cell ultrastructure was observed under transmission electron microscopy; real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expressions of DAPK1 and miR-26a-5p; molecular docking were used to verify the interaction between 6-SH and miR-26a-5p; dual-luciferase assay was used to verify the targeting relationship between DAPK1 and miR-26a-5p; flow cytometry was used to determine the levels of intracellular Ca2+; Western blotting was used to detect the protein expressions of phosphorylated-glutamate receptor 2B (p-NMDAR2B) Ser1303, DAPK1, autophagy related protein Beclin1, light chain 3 (LC3), and p-DAPK1 Ser308; immunofluorescence was used to detect the expression of LC3 and Beclin1. The results of the CCK-8 assay showed that the cell viability of the 6-SH intervention group was significantly increased compared to the OGD/R group, while the cell viability of the miR-26a-5p inhibitor pretreatment group was significantly decreased compared to the 6-SH intervention group. Transmission electron microscopy revealed that the number of autophagosomes in the 6-SH intervention group was significantly reduced compared to the OGD/R group, while the number of autophagosomes in the miR-26a-5p inhibitor pretreatment group was significantly increased compared to the 6-SH intervention group. RT-qPCR results showed that compared with the OGD/R group, the expression of miR-26a-5p was significantly upregulated and the expression of DAPK1 mRNA was significantly downregulated in the 6-SH intervention group; compared with the 6-SH intervention group, the expression of miR-26a-5p was significantly downregulated and the expression of DAPK1 mRNA was significantly upregulated in the miR-26a-5p inhibitor pretreatment group. Molecular docking verified the interaction between 6-SH and miR-26a-5p. Dual-luciferase reporter gene assay showed that compared with the negative control group, mmu-miR-26a-5p significantly downregulated the luciferase expression of m-DAPK1-3UTR-WT, indicating a binding interaction between them. Flow cytometry results showed that compared with the OGD/R group, the level of intracellular Ca2+; was significantly decreased in the 6-SH intervention group; compared with the 6-SH intervention group, the level of Ca2+ was significantly increased in the miR-26a-5p inhibitor pretreatment group. Western blotting results showed that compared with the OGD/R group, the protein expressions of p-NMDAR2B Ser1303, DAPK1, Beclin1, and LC3 were significantly decreased in the 6-SH intervention group (p-NMDAR2B Ser1303/β-actin: 2.34±0.27 vs. 4.78±0.39, DAPK1/β-actin: 1.40±0.13 vs. 2.37±0.21, Beclin1/β-actin: 2.61±0.32 vs. 4.32±0.29, LC3/β-actin: 2.52±0.45 vs. 5.09±0.18, all P < 0.05), while the protein expression of p-DAPK1 Ser308 was significantly increased (p-DAPK1 Ser308/β-actin: 0.66±0.09 vs. 0.40±0.02, P < 0.05); compared with the 6-SH intervention group, the protein expressions of p-NMDAR2B Ser1303, DAPK1, Beclin1, and LC3 were significantly increased in the miR-26a-5p inhibitor pretreatment group (p-NMDAR2B Ser1303/β-actin: 4.08±0.14 vs. 2.34±0.27, DAPK1/β-actin: 1.96±0.15 vs. 1.40±0.13, Beclin1/β-actin: 3.92±0.31 vs. 2.61±0.32, LC3/β-actin: 4.33±0.33 vs. 2.52±0.45, all P < 0.05), while the expression of p-DAPK1 Ser308 protein was significantly decreased (p-DAPK1 Ser308/β-actin: 0.33±0.12 vs. 0.66±0.09, P < 0.05); immunofluorescence staining showed that compared with the OGD/R group, the fluorescence intensity of LC3 and Beclin1 was significantly decreased in the 6-SH intervention group; compared with the 6-SH intervention group, the fluorescence intensity of LC3 and Beclin1 was significantly increased in the miR-26a-5p inhibitor pretreatment group. 6-SH can alleviate neuronal damage by regulating miR-26a-5p/DAPK1 to reduce autophagy and calcium overload in cells.
Read full abstract