Addition of high concentrations of compatible co-solutes such as sugars, sugar alcohols and polyols has recently been shown to lead to marked increases in the thermal stability of oxygen-evolution in chloroplasts (Williams et al. (1992) Biochim. Biophys. Acta 1099, 137–144). In this paper, a similar stabilisation is demonstrated for oxygen-evolving PS II core preparations. The presence of such co-solutes appears, however, to have no ability to stabilise PS II reaction-centre preparations against heat-induced changes in their absorption spectrum. Nor do they protect electron transport from artificial electron donors in PS II core preparations lacking the extrinsic 33 kDa polypeptide of the oxygen-evolution system. Measurements performed on core preparations retaining the 33 kDa polypeptide but lacking the 17 kDa and 23 kDa polypetides indicate that the co-solutes protect PS-II-mediated electron transport by stabilising the binding of the 33 kDa polypeptide to the core complexes. These findings are discussed in terms of an extension of the general principles underlying the Hofmeister effect observed for soluble proteins to the stabilisation of photosynthetic membrane preparations.