Metal-based monolithic catalysts offer significant advantages in heterogeneous catalysis attributed to their exceptional thermal conductivity and mechanical strength. However, controlling the loading of active components on metallic substrates remains a major challenge. Here, we synthesized a Mn-doped Cu mesh catalyst using a facile electrochemical method, allowing the active components to grow directly on Cu mesh without extra pretreatments or binding agents. The synthesized catalyst exhibits approximately a 30 % increase in carbon monoxide oxidation activity at 100°C and a 60 % increase in toluene oxidation activity at 240°C compared to the Mn-free Cu mesh catalyst. We found that calcination in inert gases enhances interactions between Cu and Mn species, leading to more oxygen vacancies and adsorption sites for reactants. This investigation paves the way for fabricating multi-metal monolithic catalysts on metallic substrates.
Read full abstract