Abstract

This study introduces a new approach for constructing atomistic models of nanoporous carbon by randomly distributing carbon atoms and pore volumes in a periodic box and then using empirical and ab initio molecular simulation tools to find the suitable energy-minimum structures. The models, consisting of 5000, 8000, 12000, and 64000 atoms, each at mass densities of 0.5, 0.75, and 1 g/cm3, were analyzed to determine their structural characteristics and relaxed pore size distribution. Surface analysis of the pore region revealed that sp atoms exist predominantly on surfaces and act as active sites for oxygen adsorption. We also investigated the electronic and vibrational properties of the models, and localized states near the Fermi level were found to be primarily situated at sp carbon atoms through which electrical conduction may occur. Additionally, the thermal conductivity was calculated using heat flux correlations and the Green-Kubo formula, and its dependence on pore geometry and connectivity was analyzed. The behavior of the mechanical elasticity moduli (Shear, Bulk, and Young's moduli) of nanoporous carbons at the densities of interest was discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.