The oxyfluoride glass and glass-ceramics from the LiF-B2O3-SiO2 system are developed. The stable glass can be produced in the range of 20–40 mol% LiF. The effect of LiF admixture on the thermal stability of the glass as well as the thermoluminescence (TL) properties such as glow curves shape is studied. The results show that the increase of lithium fluoride content in the borosilicate glass causes efficiency enhancement of the thermoluminescence signal. We have clearly stated that the process of controlled crystallization of the oxyfluoride glasses can lead again to increased intensity of the TL process. The glass-ceramics with 40 mol% LiF reveals similar level of TL signal to commercially used doped LiF material and can be considered as active material for alpha and beta radiation detectors.