Oxidation of lower phosphorus oxyacids by benzyltrimethylammonium dichloroiodate (BTACI), in the presence of zinc chloride, resulted in the formation of the corresponding oxyacids with phosphorus in a higher oxidation state. The reaction is first order with respect to the concentration of BTACI, oxyacid and zinc chloride. The reaction exhibited the presence of a substantial kinetic isotope effect. Addition of benzyltrimethylammonium chloride enhances the reaction rate. It is proposed that the reactive oxidizing species is [PhCH2Me3N]+ [Zn2Cl6]−2I+. It has been shown that the pentacoordinated tautomer of the phosphorus oxyacid is the reactive reductant. A mechanism involving a hydride-ion transfer from the P-H bond to the oxidant in the rate-determining step has been postulated.