AbstractTwo phosphine ligands of [Pd(PPh3)4] were substituted by π(CS) coordination of 4‐bromodithiobenzoic acid methyl ester resulting in complex 1. The same ester, after alkylation, afforded the dicationic complex bis(μ‐methanethiolato)tetrakis(triphenylphosphine)dipalladium(2+) bis(tetrafluoroborate) (2) from the same palladium source. A related thiolato‐bridged complex, bis(μ‐methanethiolato)bis(1‐methylpyridin‐2(1H)‐ylidene)bis(triphenylphosphine)dipalladium(2+) bis(tetrafluoroborate) (4) and the trinuclear cluster tris(μ‐methanethiolato)tris(triphenylphosphine)tripalladium(+)(3PdPd) (5) resulted from treatment of a known cationic pyridinylidene complex with MeSLi. The double oxidative substitution reaction of [Pd(PPh3)4] with 1,5‐dichloro‐9,10‐anthraquinone afforded trans‐dichloro[μ‐(9,10‐dihydro‐9,10‐dioxoanthracene‐1,5‐diyl)]tetrakis(triphenylphosphine)dipalladium (6). Some of these complexes could be fully characterized by 1H‐, 13C‐, and 31P‐NMR spectroscopy, mass spectrometry, and elemental analysis. The crystal and molecular structures of all of them, and of trans‐bis(1,3‐dihydro‐1,3‐dimethyl‐2H‐imidazol‐2‐ylidene)diiodopalladium (3), were determined by single‐crystal X‐ray diffraction.
Read full abstract