The nna1 gene mutation is associated with spontaneous degeneration of cerebellar Purkinje cells and germ cells in Ataxia and Male Sterility (AMS) mouse. Since nna1 is also expressed in hippocampal neurons, we investigated their vulnerability to hypoperfusion in AMS mouse. Eight-week-old male wild type (WT) and AMS mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 10min and sacrificed 1, 3, 7 and 28 days after BCCAO. Nissl staining revealed the neuronal cell loss and pyknotic change in the CA1 of AMS mice. TUNEL+ apoptotic cells were found in the area at 7 days in AMS mice. Bcl-2 mRNA and protein in WT hippocampus were increased, while they were not increased in AMS. Bax mRNA was increased in AMS. Moreover, Bax activation was immunohistochemically demonstrated only in AMS at 3 and 7 days after BCCAO. An oxidative DNA damage marker, 8-hydroxydeoxyguanosine-positive cells were increased in both strains at 1 day; decreased in WT at 3 days but remained high in AMS. BCCAO increased glutathione, an antioxidant, in WT, but not in AMS at 3 days. The mRNA level of mitochondrial uncoupling protein 2, a regulator of oxidative stress, was increased only in WT at 1 day. Nna1 mRNA was similarly expressed in WT and AMS, but the protein was undetectable in AMS. Thus, our results indicate the increased vulnerability of hippocampal CA1 neurons of AMS mice to cerebral hypoperfusion could be due to an imbalance between oxidative stress and antioxidative defense system.
Read full abstract