Microplastics (MPs) pollution is getting increasingly prominent, and its dangers have attracted widespread attention. The heart is the central hub of the organism's survival, and the mechanism of MPs-induced heart injury in chickens is unknown. Here, we investigated the effects of 5 μm polystyrene microplastics (PS-MPs) on the heart and primary cardiomyocytes of chickens at varied concentrations. We observed that PS-MPs caused severe pathological damage and ultrastructural changes in heart, induced myocardial pyroptosis, inflammatory cell infiltration and mitochondrial lesions. PS-MPs evoked abnormal antioxidant enzyme content and ROS overproduction. Detailed mechanistic investigation indicated that PS-MPs triggered pyroptosis via NF-κB-NLRP3-GSDMD axis and exacerbated myocardial inflammation (NLRP3, Caspase-1, IL-1β, IL-18, ASC, GSDMD, NF-κB, COX-2, iNOS and IL-6 overexpression). Additionally, PS-MPs induced mitochondrial damage (TFAM, OPA1, MFN1 and MFN2 down-expression, DRP1 and Fis1 overexpression) and energy metabolism disorders (HK2, PKM2, PDHX and LDH up-regulation) by inhibiting AMPK-PGC-1α pathway. Interestingly, NAC alleviated these aberrant manifestations in vitro. We suggested that PS-MPs driven alterations in NF-κB-NLRP3-GSDMD and AMPK-PGC-1α pathways via ROS overload, which in turn triggered oxidative stress, myocardial pyroptosis, inflammation, mitochondrial and energy metabolism dysfunction. This provided theoretical bases for protecting chickens from toxic injury by MPs.