This work examines the functional dependence of the efficiency of separation of oil-water emulsions on surfactant adsorption abilities of high surface area polymer gels. The work also develops an understanding of the factors and steps that are involved in emulsion separation processes using polymer gels. The work considers four polymer gels offering different surface energy values, namely, syndiotactic polystyrene (sPS), polyimide (PI), polyurea (PUA), and silica. The data reveal that surfactant adsorption abilities directly control the emulsion separation performance. The gels of sPS and PI destabilize the emulsions due to significant surfactant adsorption. The surfactant-lean oil droplets are then absorbed in the pores of sPS and PI gels due to the preferential wettability of the oil phase. The PUA and silica gels are more hydrophilic and show a lower surfactant adsorption ability. These gels cannot effectively remove the surfactant molecules from the emulsions, leading to a poor emulsion separation performance. The study uses simulation data to understand the adsorption characteristics of two poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants. The simulation results are used for the interpretation of emulsion separation performance by the gels.
Read full abstract