Furfural and 5-hydroxymethyl furfural (HMF) are abundantly available biomass-derived renewable chemical feedstocks, and their oxidation to furoic acid and furan-2,5-dicarboxylic acid (FDCA), respectively, is a research area with huge prospective applications in food, cosmetics, optics, and renewable polymer industries. Water-based oxidation of furfural/HMF is a lucrative approach for simultaneous generation of H2 and furoic acid/FDCA. However, this process is currently limited to (photo)electrochemical methods that can be challenging to control, improve, and scale up. Herein, we report well-defined ruthenium pincer catalysts for direct homogeneous oxidation of furfural/HMF to furoic acid/FDCA, using alkaline water as the formal oxidant while producing pure H2 as the reaction byproduct. Mechanistic studies indicate that the ruthenium complex not only catalyzes the aqueous oxidation but also actively suppresses background decomposition by facilitating initial Tishchenko coupling of substrates, which is crucial for reaction selectivity. With further improvement, this process can be used in scaled-up facilities for a simultaneous renewable building block and fuel production.