AbstractThe Varroa destructor mite causes severe losses of Apis mellifera colonies, requiring recurring treatments. One such treatment is oxalic acid (OA), considered ecological. However, it is unclear whether OA affects the honey bee gut microbiota or other hive-associated microbiotas. Herein, we studied the effect of three OA treatments (trickling at 2.1% or 4.2%, and sublimation through Varrox®) upon microbial communities associated with workers’ gut, hive bee bread and pupae, sampled from conventionally or ecologically managed colonies under different anthropization levels (located in urban, rural or mountainous landscapes). We hypothesized that treatment with OA would impact the diversity and composition of bacteria and/or eukaryotic communities, and that the effect would be dose-dependent and specific to the beehive niche. Results showed that the microbiomes of apiaries under different anthropization levels and management strategies differed prior to OA application. Neither the bacterial nor the fungal communities of bee bread and pupae shifted due to OA treatment. Independent of the dosage and the application method (trickling or sublimation), OA induced slight compositional changes in the bacterial profiles of honeybee guts. Those changes were stronger the higher the anthropization (in colonies from urban areas under conventional management). OA treatment reduced the relative abundance of several pathogens, such as Nosema ceranae, and decreased the overall bacterial diversity down to values found in less anthropized colonies. Thus, our results suggest that, aside from managing Varroa infestations, OA could have beneficial effects for stressed colonies while not impairing honey bee resilience from a microbial point of view.
Read full abstract