The increased demand for rare earth elements in advanced technological applications and supply shortages call for metal recovery from secondary sources. Permanent magnet (Nd2Fe14B or NdFeB) may serve as a potential secondary source due to its high rare earth (Nd+Pr+Dy: ∼30 %) content and its vast application. The present study utilizes a chloridizing roasting (CaCl2.2 H2O) pre-treatment process followed by water leaching, acid leaching (0.5 M HCl, S/L =1/10 g/ml, 90 °C, 3 h), oxalic acid precipitation and calcination (850 °C, 2 h) to obtain mixed rare earth oxides. The process was optimized based on temperature (400–700 °C), dosage (CaCl2.2H2O: NdFeB=0.5:1–2.5:1), and time (30–120 min) on the rare earth dissolution. The theoretical activation energy for the chloridizing roasting process is estimated as 22.3 (OFW) and 16.7 kJ/mol (KAS), while the experimental activation energy for Nd and Dy dissolution was determined to ∼29.3 and ∼17.7 kJ/mol, respectively depicting product layer diffusion-controlled kinetics. Higher dosages of CaCl2.2H2O (1.5:1 and 2:1) favored NdOCl formation, thereby, higher dissolution; however, further higher dosage (2.5:1) leads to reduced Nd dissolution due to higher CaO formation and acid consumption by Ca during leaching. Incomplete oxidation at lower temperatures (400 °C) and iron dissolution impair the Nd dissolution and selectivity. Excessive oxidation at >700 °C favors the formation of NdFeO3, decreasing Nd dissolution. The maximum dissolution of Nd was ∼89 %, while for Dy, it was ∼88 % at optimum conditions of 600 °C, 90 min, 2:1. Water leaching post-roasting leads to ∼87 % Ca removal and the precipitation efficiency of rare earth oxalates was 99 %. The overall extraction for rare earth elements was ∼89 %, and 1 kg of NdFeB powder can yield ∼285 g of rare earth oxides (∼239 g Nd2O3, ∼14 g Dy2O3) with 96 % purity. Further, this study demonstrates that using CaCl2.2 H2O as a solid chlorinating agent in chlorination roasting enhances recovery rates of mixed rare earth oxides while providing a safer and more environment-friendly alternative for industrial applications.
Read full abstract