Abstract
Oxalic acid precipitation is a common step in the purification of rare earth elements (REE) from a concentrated pregnant leach solution (PLS). However, the presence of contaminants such as Al, Fe, and Ca in given amounts decreases the REE precipitation efficiency and product purity while also increasing the amount of oxalic acid needed to maximize recovery. As such, a statistically designed test program was performed to identify the optimal conditions necessary for a relatively low REE content PLS containing elevated concentrations of contaminant ions. The performance objective was maximization of REE precipitation efficiency while minimizing the oxalic acid dosage. A central composite design was utilized to quantify performance impacts and identify the ultimate set of parameter values for oxalic acid dosage, Fe(III) contamination concentration, solution pH, and reaction temperature. The resultant model suggested that oxalic acid dosage and reaction pH are the most significant factors for the REE precipitation efficiency, followed by the interaction of oxalic dosage and Fe concentration. Test results indicate that increasing the oxalic acid concentration from 0 g/L to 80 g/L improved the REE precipitation efficiency from approximately 4.2% to 95.0%. Furthermore, raising the solution pH from 0.5 to 2.5 considerably enhanced the precipitation efficiency from 0.0% to 98.9%. A solution temperature elevation decreased REE recovery, which indicated an exothermic reaction between REEs and oxalate anions. Finally, a high level of Fe contamination adversely impacted REE precipitation efficiency. To further the understanding of the REE-oxalate system, a fundamental solution chemistry study was performed using the equilibrium constants of the reactions. The study resulted in the development of oxalate speciation diagrams and provided an analysis of the REE precipitation characteristics at various oxalate anion concentrations and Fe(III) contamination levels using MINTEQ software. The dominant Fe(III) species in the solution system were found to be Fe-(C2O4)33-, Fe-(C2O4)2-, and Fe-(C2O4)+, which consume the majority of the oxalate anions. The simulated model was found to be in agreement with the experimental findings and helped to explain the adverse impact of increased iron concentrations on REE precipitation efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.