To elucidate the immunological role for the costimulatory molecule OX40 against the early stage of HIV-1 infection, fresh peripheral blood mononuclear cells (PBMCs) from normal donors were stimulated with immobilized anti-CD3 monoclonal antibody (mAb) together with soluble anti-CD28 mAb for 24 h, infected with CCR5-tropic (R5) HIV-1, and then cocultured in the presence or absence of OX40 ligand (OX40L). Results of these studied showed that OX40 stimulation led to a marked reduction in levels of p24, the frequency of intracellular p24(+) cells, as well as HIV-1-mediated syncytium formation. The suppression was reversed by anti-OX40L mAb. The mechanism underlying the R5 HIV-1 suppression was shown to be mediated in part by the CCR5-binding β-chemokines RANTES, MIP-1α, and MIP-1β, since the effect of the OX40 stimulation was reversed by a neutralizing antibody mixture against these three β-chemokines. Thus, OX40 stimulation enhanced the production of these CCR5-binding β-chemokines by the activated PBMCs and subsequently down-modulated CCR5 expression on the activated CD4(+) T cells. Taken together, the present data revealed a new role for OX40 in HIV-1 infection and documents the fact that OX40 stimulation suppresses the infection of primary activated PBMCs with R5 HIV-1 via enhanced production of R5 HIV-1 suppressing β-chemokines.
Read full abstract