This paper describes a program—SPARQL Query Generator (SQG)—which takes as input an OWL ontology, a set of object descriptions in terms of this ontology and an OWL class as the context, and generates relatively large numbers of queries about various types of descriptions of objects expressed in RDF/OWL. The intent is to use SQG in evaluating data representation and retrieval systems from the perspective of OWL semantics coverage. While there are many benchmarks for assessing the efficiency of data retrieval systems, none of the existing solutions for SPARQL query generation focus on the coverage of the OWL semantics. Some are not scalable since manual work is needed for the generation process; some do not consider (or totally ignore) the OWL semantics in the ontology/instance data or rely on large numbers of real queries/datasets that are not readily available in our domain of interest. Our experimental results show that SQG performs reasonably well with generating large numbers of queries and guarantees a good coverage of OWL axioms included in the generated queries.
Read full abstract