Epicuticular lipids were extracted from the foliage of six deciduous and one evergreen azalea genotypes (Rhododendron sp.) and identified by gas chromatography-mass spectrometry. The relationship of leaf-surface lipid composition with measures of resistance to azalea lace bug, Stephanitis pyrioides Scott, was evaluated. Each genotype had a distinct epicuticular lipid composition. The major surface lipid components from all test taxa were n-alkanes and triterpenoids. In the most resistant genotypes [R. canescens Michaux and R. periclymenoides (Michaux) Shinners] ursolic acid, n-hentriacontane, and n-nonacosane were the most abundant epicuticular lipids. The lipids present in largest proportion among all susceptible deciduous genotypes tested were α-amyrin, β-amyrin, and n-nonacosane. The proportions of the lipid components from the same plant of each genotype varied between spring and fall samples. Among classes of lipids, n-alkanes, n-1-alkanols, and triterpenoids had significant correlations with azalea lace bug behavior on host plants. Among individual components, heptadecanoic acid, n-hentriacontane, oleanolic acid, ursolic acid and one unknown compound (with major mass spectra 73/179/192/284/311) were significantly negatively correlated with host plant susceptibility to azalea lace bug, as measured by oviposition, leaf area damaged, egg and nymphal development, and nymphal survivorship. Triacontanol, α-amyrin, β-amyrin, and three unknowns were significantly positively correlated with host plant susceptibility. Acceptance or rejection by azalea lace bug to a particular plant may be mediated by a balance of positively and negatively interpreted sensory signals evoked by plant chemicals. This study indicated that the high levels of resistance observed in R. canescens and R. periclymenoides may be due to the lesser amount or the absence of attractants and stimulants for feeding or oviposition.
Read full abstract