Mosquitoes threaten over half of the world's population through vectored diseases such as malaria, zika, yellow fever, dengue, and chikungunya. Mosquitoes have a highly developed olfactory system attuned to chemotaxis relating to host-seeking, mating, and oviposition behavior. In this study, we aimed to determine the spatial efficacy of 2 plant-based repellent blends (Blend3 and Blend4that had previously been found to successfully repel Aedes, Anopheles and Culex mosquitoes in wind tunnel assays)in excluding Aedes aegypti from the window entry. A new cage system was developed for parallel "no-choice" and "choice" olfactometric assays. In the no-choice trial, Blends 3 and 4, as well as commercial products (N, N-diethyl-3-methylbenzamide, p-menthane-3,8-diol [PMD], 3-(N-n-butyl-N-acetyl)-amino-propionic acid ethyl ester, and 2-(2-hydroxyethyl)-1-methylpropylstyrene 1-piperidine carboxylate), were adsorbed into filter papers of different sizes and placed in a window created between 2 attached bug dorms. Then, the number of mosquitoes entering the window was counted through a 6-min period. In choice olfactometric assays, Blends 3, 4, and PMD were adsorbed into filter paper and the number of mosquitoes moving away from Blend 3 and PMD were compared. No-choice assays showed that Blend3 (P < 0.001) and Blend4 (P = 0.0012) were more repellent than the best commercial product PMD. Additionally, while Blend 4 was significantly more repellent than Blend 3 (P = 0.012) in the choice assay, overall, these 2 blends show promise as new repellents for the spatial exclusion of Aedes aegypti from window entry alone or as part of a "push-pull'' strategy.
Read full abstract