BackgroundThis study was to establish and validate prediction models to predict the cancer-specific survival (CSS) and overall survival (OS) of small-cell lung cancer (SCLC) patients with liver metastasis.MethodsIn the retrospective cohort study, SCLC patients with liver metastasis between 2010 and 2015 were retrospectively retrieved from the Surveillance, Epidemiology, and End Results (SEER) database. Patients were randomly divided into the training group and testing group (3: 1 ratio). The Cox proportional hazards model was used to determine the predictive factors for CSS and OS in SCLC with liver metastasis. The prediction models were conducted based on the predictive factors. The performances of the prediction models were evaluated by concordance indexes (C-index), and calibration plots. The clinical value of the models was evaluated by decision curve analysis (DCA).ResultsIn total, 8,587 patients were included, with 154 patients experiencing CSS and 154 patients experiencing OS. The median follow-up was 3 months. Age, gender, marital status, N stage, lung metastases, multiple metastases surgery of metastatic site, chemotherapy, and radiotherapy were independent predictive factors for the CSS and OS of SCLC patients with liver metastasis. The prediction models presented good performances of CSS and OS among patients with liver metastasis, with the C-index for CSS being 0.724, whereas the C-index for OS was 0.732, in the training set. The calibration curve showed a high degree of consistency between the actual and predicted CSS and OS. DCA suggested that the prediction models provided greater net clinical benefit to these patients.ConclusionOur prediction models showed good predictive performance for the CSS and OS among SCLC patients with liver metastasis. Our developed nomograms may help clinicians predict CSS and OS in SCLC patients with liver metastasis.
Read full abstract