Usually, deep oil and gas accumulation is often controlled by strike–slip faults. However, in the Tarim Basin, deep Ordovician oil and gas accumulations are also found in areas far from the fault zone. The process of oil and gas accumulation in deep reservoirs far from strike–slip fault zones is still unclear at present. The source and evolution of Ordovician fluids were analyzed using inclusion geochemical methods and the U–Pb dating technique. The analysis of rare earth elements and carbon–oxygen–strontium isotopes in the reservoirs showed that the reservoirs were weakly modified by diagenetic fluid. The fluid was derived from the fluid formation during the same period as the seawater, and no oxidizing fluid invaded the reservoir. The late oil and gas reservoirs had good sealing properties. The U–Pb dating results combined with homogenization temperature data revealed that the first-stage oil was charged during the Late Caledonian Period, and the second-stage natural gas was charged during the Middle Yanshanian Period. The evolution of the paleo-pressure showed that the charging of natural gas in the Middle Yanshanian was the main reason for the formation of reservoir overpressure. The strike–slip fault zone was basically inactive in the Middle Yanshanian. During this period, the charged natural gas mainly migrated to the reservoir along the unconformity surface and the open strike–slip fault zone in the upper part of the Ordovician reservoir. The source of the fluid shows that the reservoir in the late stage had good sealing properties, and there was no intrusion of exogenous fluid. The overpressure in the reservoir is well preserved at present.