With the increasing importance of power accumulator batteries in electric vehicles, the accurate characteristics of power accumulator batteries have an important role. In order to evaluate the power accumulator battery, battery charging and discharging is indispensable. In this article, a H-bridge bidirectional DC-DC converter is presented which can charge and discharge the battery with different voltage levels and one of the merits of this topology is that a wide output voltage range can be easily achieved. In the control part, a proportional-integral (PI) control strategy is adopted to ensure a stable and reliable operation of the converter. Furthermore, compared with the PI control strategy, a duty ratio feedforward control is utilized to obtain the rapid current dynamic response. In this article, firstly, the system configuration for battery charging and discharging is introduced, then the operating principles and mathematical model of the DC-DC converter are analyzed and derived. Secondly, for bidirectional DC-DC converters, the PI control method and duty ratio feedforward control method are put forward and designed. Finally, the simulation model is established based on PSIM software and the experiment platform is also built in lab. The results of the simulation and experiment research show that the H-bridge bidirectional DC-DC converter can operate reliably and stably during the charging, discharging and power flow reverse modes. In addition, the dynamic response of the charging and discharging current can also be further improved by introducing the duty ratio feedforward control method.