The escalating challenges of municipal solid waste (MSW) management, exacerbated by the classification of MSW as hazardous waste due to the presence of heavy metals (HMs) and toxic compounds, necessitate innovative treatment strategies. Plasma pyrolysis has emerged as a promising technology for converting MSW into valuable energy byproducts, such as syngas, bio-oil, and slag, while significantly reducing waste volume. However, maintaining optimal operational parameters during the plasma pyrolysis process remains a complex challenge that can adversely affect both the efficiency and the quality and quantity of outputs. To address this issue, the integration of the Internet of Things (IoT) presents a transformative approach. By leveraging IoT technologies, real-time monitoring and advanced data analytics can be employed to optimize the operational conditions of plasma pyrolysis systems, ensuring consistent performance and maximizing resource recovery. This review explores the synergistic integration of plasma pyrolysis and IoT as a novel strategy for MSW management. The slag from plasma treatment can be efficiently channeled into anaerobic digestion (AD) systems, promoting resource recovery through biogas production and the generation of nutrient-rich digestate. This synergy not only mitigates the environmental impacts associated with traditional MSW disposal methods but also paves the way for sustainable energy recovery and resource management. Ultimately, this review presents a comprehensive framework for exploiting plasma pyrolysis and IoT in addressing the pressing issues of hazardous MSW, thereby fostering a circular economy through innovative waste-to-energy solutions.
Read full abstract