FeynRules is a Mathematica-based package which addresses the implementation of particle physics models, which are given in the form of a list of fields, parameters and a Lagrangian, into high-energy physics tools. It calculates the underlying Feynman rules and outputs them to a form appropriate for various programs such as CalcHep, FeynArts, MadGraph, Sherpa and Whizard. Since the original version, many new features have been added: support for two-component fermions, spin-3/2 and spin-2 fields, superspace notation and calculations, automatic mass diagonalization, completely general FeynArts output, a new universal FeynRules output interface, a new Whizard interface, automatic 1→2 decay width calculation, improved speed and efficiency, new guidelines for validation and a new web-based validation package. With this feature set, FeynRules enables models to go from theory to simulation and comparison with experiment quickly, efficiently and accurately. Program summaryProgram title: FeynRules 2.0Catalogue identifier: AEDI_v2_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDI_v2_0.htmlProgram obtainable from: CPC Program Library, Queen’s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 51324No. of bytes in distributed program, including test data, etc.: 455219Distribution format: tar.gzProgramming language: Mathematica.Computer: Platforms on which Mathematica is available.Operating system: Operating systems on which Mathematica is available.Classification: 11.1, 11.6.Does the new version supersede the previous version?: YesCatalogue identifier of previous version: AEDI_v1_1Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 2404Nature of problem:The program computes the Feynman rules of any quantum field theory, expressed in four-dimensional space–time, directly from the Lagrangian of the model. Various interfaces to Feynman diagram calculators are included that allow the exportation of the interaction vertices in a format readable by different Monte Carlo event generators or symbolic calculation tools.Solution method:FeynRules works in three steps: 1.If necessary, the model Lagrangian is written in terms of four-component fermions and the usual fields of particle physics, instead of Weyl fermions or superfields.2.Derivation of the Feynman rules directly form the Lagrangian using canonical commutation relations among fields and creation operators.3.Implementation of the new physics model into FeynArts as well as into various Monte Carlo programs via dedicated interfaces.Reasons for new version:Bug fixes.Summary of revisions:•cleaning of unnecessary files•bug related to epsilon tensors•bug with multiple interaction order fixed•bug when we have one mass parameter for several•particles in the UFORestrictions:Mathematica version 7.0 or higher. The Lagrangian must fulfill basic quantum field theory requirements, such as locality and Lorentz and gauge invariance. Fields with spin 0, 1/2, 1, 3/2 and 2 are supported.Unusual features:Translation interfaces to various Feynman diagram generators exist. Superfields are also supported and can be expanded in terms of their component fields, which allows the performance of various sets of superspace computations.Running time:The computation of the Feynman rules from a Lagrangian varies with the complexity of the model, and runs from a few seconds to several minutes. See Section 7 of the present manuscript for more information.
Read full abstract