This paper falls within the framework of the security of satellite images, in particular interferograms from an Interferometric Synthetic Aperture Radar (inSAR) system. The innovation of this work consists in the application of a cryptosystem based on two algorithms Advanced Encryption Standard (AES) and the Rivest, Shamir and Adleman (RSA) encryption algorithm for securing interferograms of inSAR systems. AES employs five encryption modes Electronic Code Book (ECB), Cipher Bloc Chaining (CBC), Cipher FeedBack (CFB), Output FeedBack (OFB), and counter-mode encryption (CTR). The use of the AES algorithm alone can only ensure the confidentiality function. In the proposed cryptosystem confidentiality is ensured by the AES algorithm, authenticity is guaranteed by the RSA algorithm, and integrity is ensured by two parameters; the correlation function between the adjacent pixels and the SSIM parameters (structural similarity index SSIM). For evaluation and analysis of security performance for interferogram encryption, several test metrics are employed. These metrics are: Analysis of histograms of the encrypted interferograms, correlation between the adjacent pixels, between the original interferogram and the encrypted interferogram, SSIM between the original interferogram and the decrypted one. Moreover, we exploit the analysis of resistance to error propagation for the five modes. The obtained results show a superiority of the OFB and CTR modes for the encryption of inSAR interferograms compared to ECB, CFB, and CBC modes. It is noteworthy, that the main criteria that can be used to choose between OFB and CTR for encryption of satellite images are propagation of errors and the complexity material for their locations on the edges of the satellites propagation of errors and the complexity material for their locations on the edges of the satellites. OFB mode is employed in satellites to minimize the number of on-board circuits, which is decisive for satellites. CTR mode is recommended by the CCSDS (Consultative Committee for Space Data Systems) for telemetry (TM) and remote control (TC) encryption.
Read full abstract