The present study investigates streamwise ( $\overline {u^2}$ ) energy-transfer mechanisms in the inner and outer regions of turbulent boundary layers (TBLs). Particular focus is placed on the $\overline {u^2}$ production, its inter-component and wall-normal transport as well as dissipation, all of which become statistically significant in the outer region with increasing friction Reynolds number ( $Re_{\tau }$ ). These properties are analysed using published data sets of zero, weak and moderately strong adverse-pressure-gradient (APG) TBLs across a decade of $Re_{\tau }$ , revealing similarity in energy-transfer pathways for all these TBLs. It is found that both the inner and outer peaks of $\overline {u^2}$ are always associated with local maxima in the $\overline {u^2}$ production and its inter-component transport, and the regions below/above each of these peaks are always dominated by wall-ward/away-from-wall transport of $\overline {u^2}$ , thereby classifying the $\overline {u^2}$ profiles into four distinct regimes. This classification reveals existence of phenomenologically similar energy-transfer mechanisms in the ‘inner’ and ‘outer’ regions of moderately strong APG TBLs, which meet at an intermediate location coinciding with the minimum in $\overline {u^2}$ profiles. Conditional averaging suggests existence of similar phenomena even in low $Re_{\tau }$ canonical and/or weak APG TBLs, albeit with the outer-region mechanisms weaker than those in the inner region. This explains the absence of their $\overline {u^2}$ outer peak and the dominance of $\overline {u^2}$ wall-normal transport away from the wall, which potentially originates from the inner region. Given that the wall-ward/away-from-wall transport of $\overline {u^2}$ is governed by the $Q_4$ (sweeps)/ $Q_2$ (ejections) quadrants of the Reynolds shear stress, it is argued that the emergence of the $\overline {u^2}$ outer peak corresponds with the statistical dominance of $Q_4$ events in the outer region. Besides unravelling the dynamical significance of $Q_2$ and $Q_4$ events in the outer region of TBLs, the present analysis also proposes new phenomenological arguments for testing on canonical wall-turbulence data at very high $Re_{\tau }$ .