The recent observation of the absorption of radiation belts in the vicinity of Saturn's bright rings and historical observations of the ring system make the following related results apparent: - The gaps in the rings are caused by the presence of at least 6 small, extremely dense and probably electrically charged ‘sweeper’ moons which effectively sweep the ring matter clean from the gaps. This is known due to the fading of the inner ring edges whereas the outer edges are well defined. Their orbital periods will differ from the expected Keplerian periods if the moons and Saturn do possess electric fields. - Absorption of radiation belts near the rings (of Jupiter also) implies that the ring particles themselves are not absorbing the radiation but the small moons are. This is consistent with the observed radiation belt absorption near the outer Saturnian moons. - If electric fields of the sweeper moons cause the ring edge fading as observed (and not simply gravitational), then Saturn itself must maintain an electric field in its vicinity by way of a sizeable proton wind to affect the uneven ring edge fading and will be surrounded by an H+ cloud at least to approximately the A-ring. this is consistent with the detection of an H+ cloud surrounding Saturn (Weiseret al., 1977, p. 755). The other possibility is that these moons are extremely dense and have very large internal magnetic fields. - Because of their location, these moons must be captured and if very dense as believed, may be core remnants of a nova.
Read full abstract