Rheumatoid arthritis (RA) is a complicated chronic disorder of the immune system, featured with severe inflammatory joints, synovium hyperplasia, articular cartilage, and bone damage. In the RA microenvironment, RA-involved cells, overproduced nitric oxide (NO), and pro-inflammatory cytokines are highly interplayed and mutually reinforced, which form a vicious circle and play crucial roles in the formation and progression of RA. To comprehensively break the vicious circle and obtain the maximum benefits, we have developed neutrophil membrane-camouflaged NO scavenging nanoparticles based on an NO-responsive hyaluronic acid derivative for delivery of MTX. These multifunctional nanoparticles (NNO-NPs/MTX), by inheriting the membrane functions of the source cells, possess prolonged circulation and specific localization at the inflamed sites when administrated in the body. Remarkably, NNO-NPs/MTX can neutralize the pro-inflammatory cytokines via the outer membrane receptors, scavenge NO, and be responsively disassociated to release MTX for RA-involved cell regulation and HA for lubrication in the RA sites. In a collagen-induced arthritis mouse model, NNO-NPs/MTX exhibits a significant anti-inflammation effect and effectively alleviates the characteristic RA symptoms such as synovial hyperplasia and cartilage destruction, realizing the synergistic and boosted therapeutic outcome against intractable RA. Thus, NNO-NPs/MTX provides a promising and potent platform to integrately treat RA.