Abstract

The mechanism by which a bacterial cell senses external nutrients remains largely unknown. In this study, we identified a bacterial cell sensing system for polycyclic aromatic hydrocarbons (PAHs) in a common marine PAH-using bacterium, Cycloclasticus. It consists of an outer membrane receptor (PahS) and a periplasmic protein (PahP) in combination with a two-component sensing system (TCS) that ensures a rapid response to PAH occurrence by directly controlling serial reactions including chemotactic sensing and movement, PAH uptake and intracellular PAH metabolism. PahS protrudes from the cell and acts as a PAH sensor, transducing the PAH signal across the outer membrane to its periplasmic partner PahP, which in turn transduces the PAH signal across the periplasm to a specialized TCS. This sensing system plays a critical role in sensing and promoting the metabolism of PAHs, which can be scavenged by various hydrocarbon-degrading bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.