In this paper, a novel method is introduced to enhance the performance of vehicle-to-vehicle (V2V) visible light communication (VLC) by employing different transmitter (Tx) light-emitting diode (LED) array arrangements with different LED orientations. Improving the signal-to-noise ratio (SNR) is crucial for V2V VLC systems to provide long communication ranges. For this purpose, six transmitter configurations are proposed: single-LED transmitters, as well as 3 × 3 square-, single hexagonal-, octagonal-, 5 × 5 square-, and honeycomb hexagonal-shaped LED arrays. Indoor VLC studies using LED arrays offer a uniform SNR, while outdoor studies focus on optimizing the receiver side to enhance system performance. This paper optimizes system performance by increasing the SNR and communication range of V2V VLC systems by changing the geometry of the Tx LED array and LED orientations. A V2V VLC system using on–off keying (OOK) is modeled in MATLAB, and the SNR and bit error rate (BER) are simulated for different Tx configurations. Our results show that the honeycomb hexagonal transmitter design provides a 19% improvement in system performance with a spacing of 1 cm, and maintains a 16% improvement when the array size is reduced by a factor of 100, making it smaller than one of the smallest industrial headlight modules.