Abstract
The design and development of a photovoltaic thermal (PVT) collector were developed in this study, and electrical and electrical thermal efficiency were assessed. To improve system performance, two types of coolants were employed, liquid and liquid-based MnO nanofluid. Flow rates ranging from 1 to 4 liters per minute (LPM) for the interval of 1.0 LPM were employed, together with a 0.1% concentration of manganese oxide (MnO) nanofluid. Various parametric investigations, including electrical power generation, glazing surface temperature, electrical efficiency, and electrical thermal efficiency, were carried out on testing days, which were clear and sunny. Outdoor studies for the aforementioned nanofluids and liquids were carried out at volume flow rates ranging from 1 to 4 LPM, which can be compared for reference to a freestanding PV system. The research of two efficiency levels, electrical and electrical thermal, revealed that MnO water nanofluid provides better photovoltaic energy conversion than water nanofluid and stand-alone PV systems. In this study, three different domains were examined: stand-alone PV, liquid-based PVT collector, and liquid-based MnO nanofluids. The stand-alone PV system achieved a lower performance, the liquid-based MnO performed better, and the liquid-based PVT achieved an intermediate level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.