A prototype concentrating photovoltaic (CPV) module was designed and constructed with a low concentrating dielectric compound parabolic concentrator (DiACPC) for outdoor characterisation. The designed concentrator has acceptance half angles of 0° & 55° with a concentration ratio of 2.8. This concentrator design is suitable for building facade integration in higher latitude (>55°) locations. A small prototype CPV module of 300mm×300mm was constructed with 2 strings of 14 solar cells in series. The prototype CPV module was characterised in Edinburgh for different weather conditions and the performance is compared with a similar non-concentrating counterpart (i.e. a flat-plate module with the same PV cell area and technology) in real time. The electrical output results for a cloudy day, rainy day and a day with sunny intervals have been reported to evaluate the performance of the concentrating system with direct and diffuse irradiance. The maximum power output of the CPV module on the day with sunny intervals was found to be 5.88W for a solar radiation input of 943W/m2, which is 2.27times higher than that for the flat-plate module. The average short circuit current of the CPV module was found to be 2.22times higher than that of the flat-plate module. The average open circuit voltage and fill factor of the CPV module were also found to be 2.5% and 1.6% higher than that for the flat-plate module. The CPV module is found to be very effective on the rainy day with an average power output of 0.13W, which is 2.17times higher than the average output power for the flat-plate module.