In this study, we explored the prevalence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) in staphylococcal food poisoning outbreak isolates and foodborne isolates, and then investigated their molecular characteristics, classical staphylococcal enterotoxins (SEs), and drug resistance. Eight (2.9%) of 275 isolates from food poisoning outbreaks and 7 (3.8%) of 184 isolates from retail foods were identified as OS-MRSA isolates. Among the 15 OS-MRSA isolates, the most frequently detected toxin genes were hld (100%), hla (93.3%), pvl (80.0%), and hlb (46.7%) followed by seg and seq (33.3%, each), hlg (26.7%), seb and hlgv (20.0%, each), sec, seh, sel, sep, and tst (13.3%, each), and sei, sem, sen, and seo (6.7%, each). None of isolates carried other tested virulence genes. The most frequently detected classical SEs were SEB and SEC (26.7%, each), followed by SEA and SEE (20.0%, each), and SED (6.7%). Resistance was most frequently observed in ampicillin, penicillin, and cefoxitin (100%, each), followed by trimethoprim/sulfamethoxazole (93.3%), erythromycin (73.3%), amoxicillin/clavulanic acid (46.7%), tetracyclines (26.7%), and ciprofloxacin (6.7%). All isolates were susceptible to other tested antibiotics. A dominant molecular type belonged to ST398-IVa-t034 (26.7%), followed by ST59-IVa-t437 (20.0%), ST88-III-t14340 and ST1-IVa-t114 (13.3%, each), and ST5-II-t002, ST630-t4549, ST5-II, and ST4495-t10738 (6.7%, each). Our findings indicated that OS-MRSA strains had a low prevalence rate among outbreak strains and foodborne strains, which frequently harbored SCCmec IVa, and carried a variety of toxin genes, and also expressed numerous classical SEs. In addition, all OS-MRSA isolates were susceptible to the majority of antibacterial agents except β-lactam. Our study is the first to report that OS-MRSA isolates are associated with food poisoning outbreaks worldwide.