Today, intelligence in all walks of life is developing at an unexpectedly fast speed. The complexity of the Internet of Things (IoT) big data system of intelligent parks is analyzed to unify the information transmission of various industries, such as smart transportation, smart library, and smart medicine, thereby diminishing information islands. The traditional IoT systems are analyzed; on this basis, a relay node is added to the transmission path of the data information, and an intelligent park IoT big data system is constructed based on relay cooperation with a total of three hops. Finally, the IoT big data system is simulated and tested to verify its complexity. Results of energy efficiency analysis suggest that when the power dividing factor is 0.5, 0.1, and 0.9, the energy efficiency of the IoT big data system first increases and then decreases as α0 increases, where the maximum value appears when α0 is about 7 J. Results of outage probability analysis demonstrate that the system’s simulation result is basically the same as that of the theoretical result. Under the same environment, the more hop paths the system has, the more the number of relays is; moreover, the larger the fading index m, the better the system performance, and the lower the outage possibility. Results of transmission accuracy analysis reveal that the IoT big data system can provide a result that is the closest to the actual result when the successful data transmission probability is 100%, and the parameter λ values are between 0.01 and 0.05; in the meantime, the delay of successful data transmission is reduced gradually. In summary, the wireless relay cooperation transmission technology can reduce the outage probability and data transmission delay probability of the IoT big data system in the intelligent park by adding the multihop path, thereby improving the system performance. The above results can provide an experimental basis for exploring the complexity of IoT systems in intelligent parks.